Hypothesis Testing

Computer Simulation using examples from infer package. Code for quiz 13

Load the R packages that we will use

Question: t-test

set.seed(123)

hr <- read_csv("https://estanny.com/static/week13/data/hr_2_tidy.csv",
               col_types = "fddfff")

skim(hr)
Table 1: Data summary
Name hr
Number of rows 500
Number of columns 6
_______________________
Column type frequency:
factor 4
numeric 2
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
gender 0 1 FALSE 2 mal: 256, fem: 244
evaluation 0 1 FALSE 4 bad: 154, fai: 142, goo: 108, ver: 96
salary 0 1 FALSE 6 lev: 95, lev: 94, lev: 87, lev: 85
status 0 1 FALSE 3 fir: 194, pro: 179, ok: 127

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
age 0 1 39.86 11.55 20.3 29.60 40.2 50.1 59.9 ▇▇▇▇▇
hours 0 1 49.39 13.15 35.0 37.48 45.6 58.9 79.9 ▇▃▂▂▂

Is the mean number of hours worked per week 48?

hr %>% 
  specify(response = hours)
Response: hours (numeric)
# A tibble: 500 x 1
   hours
   <dbl>
 1  78.1
 2  35.1
 3  36.9
 4  38.5
 5  36.1
 6  78.1
 7  76  
 8  35.6
 9  35.6
10  56.8
# ... with 490 more rows

hr %>% 
  specify(response = hours) %>% 
  hypothesize(null = "point", mu = 48)
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 500 x 1
   hours
   <dbl>
 1  78.1
 2  35.1
 3  36.9
 4  38.5
 5  36.1
 6  78.1
 7  76  
 8  35.6
 9  35.6
10  56.8
# ... with 490 more rows

hr %>% 
  specify(response = hours) %>% 
  hypothesize(null = "point", mu = 48) %>% 
  generate(reps = 1000, type = "bootstrap")
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 500,000 x 2
# Groups:   replicate [1,000]
   replicate hours
       <int> <dbl>
 1         1  39.7
 2         1  44.3
 3         1  46.8
 4         1  33.7
 5         1  39.6
 6         1  39.5
 7         1  40.5
 8         1  55.8
 9         1  72.6
10         1  35.7
# ... with 499,990 more rows

null_t_distribution <- hr %>%
  specify(response = age) %>% 
  hypothesize(null = "point", mu = 48) %>% 
  generate(reps = 1000, type = "bootstrap") %>% 
  calculate(stat = "t")

null_t_distribution
Response: age (numeric)
Null Hypothesis: point
# A tibble: 1,000 x 2
   replicate     stat
       <int>    <dbl>
 1         1  0.144  
 2         2 -1.72   
 3         3  0.404  
 4         4 -1.11   
 5         5  0.00894
 6         6  1.46   
 7         7 -0.905  
 8         8 -0.663  
 9         9  0.291  
10        10  3.09   
# ... with 990 more rows

visualise(null_t_distribution)


observed_t_statistic <- hr %>% 
  specify(response = hours) %>% 
  hypothesize(null = "point", mu = 48) %>% 
  calculate(stat = "t")

observed_t_statistic
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 1 x 1
   stat
  <dbl>
1  2.37

null_t_distribution %>% 
  get_p_value(obs_stat = observed_t_statistic, direction = "two-sided")
# A tibble: 1 x 1
  p_value
    <dbl>
1   0.014

null_t_distribution %>% 
  visualize() +
  shade_p_value(obs_stat = observed_t_statistic, direction = "two-sided")


Question: Sample t-test 2

hr_2 <- read_csv("https://estanny.com/static/week13/data/hr_1_tidy.csv",
                 col_types = "fddfff")

Is the average number of hours worked the same for both genders in hr_2?

hr_2 %>% 
  group_by(gender) %>% 
  skim()
Table 2: Data summary
Name Piped data
Number of rows 500
Number of columns 6
_______________________
Column type frequency:
factor 3
numeric 2
________________________
Group variables gender

Variable type: factor

skim_variable gender n_missing complete_rate ordered n_unique top_counts
evaluation female 0 1 FALSE 4 fai: 81, bad: 71, ver: 57, goo: 51
evaluation male 0 1 FALSE 4 bad: 82, fai: 61, goo: 55, ver: 42
salary female 0 1 FALSE 6 lev: 54, lev: 50, lev: 44, lev: 41
salary male 0 1 FALSE 6 lev: 52, lev: 47, lev: 46, lev: 39
status female 0 1 FALSE 3 fir: 96, pro: 87, ok: 77
status male 0 1 FALSE 3 fir: 89, ok: 76, pro: 75

Variable type: numeric

skim_variable gender n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
age female 0 1 41.78 11.50 20.5 32.15 42.35 51.62 59.9 ▆▅▇▆▇
age male 0 1 39.32 11.55 20.2 28.70 38.55 49.52 59.7 ▇▇▆▇▆
hours female 0 1 50.32 13.23 35.0 38.38 47.80 60.40 79.7 ▇▃▃▂▂
hours male 0 1 48.24 12.95 35.0 37.00 42.40 57.00 78.1 ▇▂▂▁▂

hr_2 %>% 
  ggplot(aes(x = gender, y = hours)) +
  geom_boxplot()


hr_2 %>% 
  specify(response = hours, explanatory = gender)
Response: hours (numeric)
Explanatory: gender (factor)
# A tibble: 500 x 2
   hours gender
   <dbl> <fct> 
 1  36.5 female
 2  55.8 female
 3  35   male  
 4  52   female
 5  35.1 male  
 6  36.3 female
 7  40.1 female
 8  42.7 female
 9  66.6 male  
10  35.5 male  
# ... with 490 more rows

hr_2 %>%
  specify(response = hours, explanatory = gender) %>% 
  hypothesize(null = "independence")
Response: hours (numeric)
Explanatory: gender (factor)
Null Hypothesis: independence
# A tibble: 500 x 2
   hours gender
   <dbl> <fct> 
 1  36.5 female
 2  55.8 female
 3  35   male  
 4  52   female
 5  35.1 male  
 6  36.3 female
 7  40.1 female
 8  42.7 female
 9  66.6 male  
10  35.5 male  
# ... with 490 more rows

hr_2 %>%
  specify(response = hours, explanatory = gender) %>% 
  hypothesize(null = "independence") %>% 
  generate(reps = 1000, type = "permute")
Response: hours (numeric)
Explanatory: gender (factor)
Null Hypothesis: independence
# A tibble: 500,000 x 3
# Groups:   replicate [1,000]
   hours gender replicate
   <dbl> <fct>      <int>
 1  36.4 female         1
 2  35.8 female         1
 3  35.6 male           1
 4  39.6 female         1
 5  35.8 male           1
 6  55.8 female         1
 7  63.8 female         1
 8  40.3 female         1
 9  56.5 male           1
10  50.1 male           1
# ... with 499,990 more rows

null_distribution_2_sample_permute <- hr_2 %>%
  specify(response = hours, explanatory = gender) %>% 
  hypothesize(null = "independence") %>% 
  generate(reps = 1000, type = "permute") %>% 
  calculate(stat = "t", order = c("female", "male"))

null_distribution_2_sample_permute
Response: hours (numeric)
Explanatory: gender (factor)
Null Hypothesis: independence
# A tibble: 1,000 x 2
   replicate   stat
       <int>  <dbl>
 1         1 -0.208
 2         2 -0.328
 3         3 -2.28 
 4         4  0.528
 5         5  1.60 
 6         6  0.795
 7         7  1.24 
 8         8 -3.31 
 9         9  0.517
10        10  0.949
# ... with 990 more rows

visualize(null_distribution_2_sample_permute)


observed_t_2_sample_stat <- hr_2 %>% 
  specify(response = hours, explanatory = gender) %>% 
  calculate(stat = "t", order = c("female", "male"))

observed_t_2_sample_stat
Response: hours (numeric)
Explanatory: gender (factor)
# A tibble: 1 x 1
   stat
  <dbl>
1  1.78

null_t_distribution %>% 
  get_p_value(obs_stat = observed_t_2_sample_stat, direction = "two-sided")
# A tibble: 1 x 1
  p_value
    <dbl>
1   0.086

null_t_distribution %>% 
  visualize() +
  shade_p_value(obs_stat = observed_t_2_sample_stat, direction = "two-sided")


Question: ANOVA

hr_anova <- read_csv("https://estanny.com/static/week13/data/hr_2_tidy.csv",
                     col_types = "fddfff")

Is the average number of hours worked the same for all three status (fired, ok, & promoted)?

hr_anova %>% 
  group_by(status) %>% 
  skim()
Table 3: Data summary
Name Piped data
Number of rows 500
Number of columns 6
_______________________
Column type frequency:
factor 3
numeric 2
________________________
Group variables status

Variable type: factor

skim_variable status n_missing complete_rate ordered n_unique top_counts
gender promoted 0 1 FALSE 2 mal: 90, fem: 89
gender fired 0 1 FALSE 2 fem: 101, mal: 93
gender ok 0 1 FALSE 2 mal: 73, fem: 54
evaluation promoted 0 1 FALSE 4 goo: 70, ver: 62, fai: 24, bad: 23
evaluation fired 0 1 FALSE 4 bad: 78, fai: 72, goo: 25, ver: 19
evaluation ok 0 1 FALSE 4 bad: 53, fai: 46, ver: 15, goo: 13
salary promoted 0 1 FALSE 6 lev: 42, lev: 42, lev: 39, lev: 34
salary fired 0 1 FALSE 6 lev: 54, lev: 44, lev: 34, lev: 24
salary ok 0 1 FALSE 6 lev: 32, lev: 31, lev: 26, lev: 19

Variable type: numeric

skim_variable status n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
age promoted 0 1 40.63 11.25 20.4 30.75 41.10 50.25 59.9 ▆▇▇▇▇
age fired 0 1 40.03 11.53 20.3 29.45 40.40 50.08 59.9 ▇▅▇▆▆
age ok 0 1 38.50 11.98 20.3 28.15 38.70 49.45 59.9 ▇▆▅▅▆
hours promoted 0 1 59.21 12.66 35.0 49.75 58.90 70.65 79.9 ▅▆▇▇▇
hours fired 0 1 41.67 8.37 35.0 36.10 38.45 43.40 77.7 ▇▂▁▁▁
hours ok 0 1 47.35 10.86 35.0 37.10 45.70 54.50 78.9 ▇▅▃▂▁

hr_anova %>% 
  ggplot(aes(x = status, y = hours)) +
  geom_boxplot()


hr_anova %>% 
  specify(response = hours, explanatory = status)
Response: hours (numeric)
Explanatory: status (factor)
# A tibble: 500 x 2
   hours status  
   <dbl> <fct>   
 1  78.1 promoted
 2  35.1 fired   
 3  36.9 fired   
 4  38.5 fired   
 5  36.1 fired   
 6  78.1 promoted
 7  76   promoted
 8  35.6 fired   
 9  35.6 ok      
10  56.8 promoted
# ... with 490 more rows

hr_anova %>%
  specify(response = hours, explanatory = status) %>% 
  hypothesise(null = "independence")
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 500 x 2
   hours status  
   <dbl> <fct>   
 1  78.1 promoted
 2  35.1 fired   
 3  36.9 fired   
 4  38.5 fired   
 5  36.1 fired   
 6  78.1 promoted
 7  76   promoted
 8  35.6 fired   
 9  35.6 ok      
10  56.8 promoted
# ... with 490 more rows

hr_anova %>%
  specify(response = hours, explanatory = status) %>% 
  hypothesise(null = "independence") %>% 
  generate(reps = 1000, type = "permute")
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 500,000 x 3
# Groups:   replicate [1,000]
   hours status   replicate
   <dbl> <fct>        <int>
 1  41.9 promoted         1
 2  36.7 fired            1
 3  35   fired            1
 4  58.9 fired            1
 5  36.1 fired            1
 6  39.4 promoted         1
 7  54.3 promoted         1
 8  59.2 fired            1
 9  40.2 ok               1
10  35.3 promoted         1
# ... with 499,990 more rows

null_distribution_anova <- hr_anova %>%
  specify(response = hours, explanatory = status) %>% 
  hypothesise(null = "independence") %>% 
  generate(reps = 1000, type = "permute") %>% 
  calculate(stat = "F")

null_distribution_anova
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 1,000 x 2
   replicate  stat
       <int> <dbl>
 1         1 0.312
 2         2 2.85 
 3         3 0.369
 4         4 0.142
 5         5 0.511
 6         6 2.73 
 7         7 1.06 
 8         8 0.171
 9         9 0.310
10        10 1.11 
# ... with 990 more rows

visualise(null_distribution_anova)


observed_f_sample_stat <- hr_anova %>% 
  specify(response = hours, explanatory = status) %>% 
  calculate(stat = "F")

observed_f_sample_stat
Response: hours (numeric)
Explanatory: status (factor)
# A tibble: 1 x 1
   stat
  <dbl>
1  128.

null_distribution_anova %>% 
  get_p_value(obs_stat = observed_f_sample_stat, direction = "greater")
# A tibble: 1 x 1
  p_value
    <dbl>
1       0

null_t_distribution %>% 
  visualize() +
  shade_p_value(obs_stat = observed_f_sample_stat, direction = "greater")

ggsave(filename = "preview.png", path = here::here("_posts", "2022-04-29-hypothesis-testing"))