Exploratory analysis

Data Visualization, part 1. Code for quiz 7.

  1. Load the R package that we will use.

Question: Modify Slide 34

ggplot(faithful) + 
  geom_point(aes(x = eruptions, y = waiting, colour = eruptions < 60))


Question: Modify Slide 35

ggplot(faithful) + 
  geom_point(aes(x = eruptions, y = waiting),
             colour = 'dodgerblue')


Question: Modify Slide 36

ggplot(faithful) + 
  geom_histogram(aes(x = waiting))


Question: Modify geom-ex-1

ggplot(faithful) + 
  geom_point(aes(x = eruptions, y = waiting),
             shape = "square", size = 5, alpha = 0.5)


Question: Modify geom-ex-2

ggplot(faithful) + 
  geom_histogram(aes(x = eruptions, fill = eruptions > 3.2))


Question: Modify stat-slide-40

ggplot(mpg) + 
  geom_bar(aes(x = manufacturer))


Question: Modify stat-slide-41

mpg_counted <- mpg %>% 
  count(manufacturer, name = 'count')
ggplot(mpg_counted) + 
  geom_bar(aes(x = manufacturer, y = count), stat = 'identity')


Question: Modify stat-slide-43

ggplot(mpg) + 
  geom_bar(aes(x = manufacturer, y = after_stat(100 * count / sum(count))))


Question: Modify stat-ex-2

ggplot(mpg) + 
  geom_jitter(aes(x = class, y = hwy), width = 0.2) +
  stat_summary(aes(x = class, y = hwy), geom = "point",
               fun = "median", color = "dodgerblue", shape = "plus", size = 2)


ggsave(filename = "preview.png",
       path = here::here("_posts", "2022-03-11-exploratory-analysis"))