Practice reading and writing data, more dplyr and a plot
Download CO2 emissions per capita from Our World in Data into the directory for this post.
Assign the location of the file file_csv. The data should be in the same directory as this file.
emissionsfile_csv <- here("_posts",
"2022-02-19-reading-and-writing-data", "co-emissions-per-capita.csv")
emissions <- read_csv(file_csv)
emissionsemissions
# A tibble: 23,307 x 4
Entity Code Year `Annual CO2 emissions (per capita)`
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.0019
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.013
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.038
# ... with 23,297 more rows
emissions data THEN,clean_names from the janitor package to make the names easier to work with.tidy_emissions show the first 10 rows of tidy_emissions.tidy_emissions <- emissions %>%
clean_names()
tidy_emissions
# A tibble: 23,307 x 4
entity code year annual_co2_emissions_per_capita
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.0019
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.013
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.038
# ... with 23,297 more rows
tidy_emissions THEN,filter to extract rows with year == 2004skim to calculate the descriptive statistics| Name | Piped data |
| Number of rows | 229 |
| Number of columns | 4 |
| _______________________ | |
| Column type frequency: | |
| character | 2 |
| numeric | 2 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| entity | 0 | 1.00 | 4 | 32 | 0 | 229 | 0 |
| code | 12 | 0.95 | 3 | 8 | 0 | 217 | 0 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| year | 0 | 1 | 2004.00 | 0.00 | 2004.00 | 2004.00 | 2004.00 | 2004.00 | 2004.0 | ▁▁▇▁▁ |
| annual_co2_emissions_per_capita | 0 | 1 | 5.43 | 6.99 | 0.02 | 0.83 | 3.23 | 8.45 | 56.7 | ▇▁▁▁▁ |
tidy_emissions then,year == 2004 and are missing a code.# A tibble: 12 x 4
entity code year annual_co2_emissions_per_ca~
<chr> <chr> <dbl> <dbl>
1 Africa <NA> 2004 1.16
2 Asia <NA> 2004 2.97
3 Asia (excl. China & India) <NA> 2004 3.61
4 EU-27 <NA> 2004 8.68
5 EU-28 <NA> 2004 8.79
6 Europe <NA> 2004 8.81
7 Europe (excl. EU-27) <NA> 2004 8.96
8 Europe (excl. EU-28) <NA> 2004 8.80
9 North America <NA> 2004 14.5
10 North America (excl. USA) <NA> 2004 5.53
11 Oceania <NA> 2004 13.2
12 South America <NA> 2004 2.36
tidy_emissions THENfilter to extract rows with year == 2004 andselect to drop the year variable THEN,rename to change the variable entity to country.emissions_2004 <- tidy_emissions %>%
filter(year == 2004, !is.na(code)) %>%
select(-year) %>%
rename(country = entity)
emissions_2004
# A tibble: 217 x 3
country code annual_co2_emissions_per_capita
<chr> <chr> <dbl>
1 Afghanistan AFG 0.036
2 Albania ALB 1.32
3 Algeria DZA 2.69
4 Andorra AND 7.35
5 Angola AGO 0.997
6 Anguilla AIA 9.89
7 Antigua and Barbuda ATG 4.56
8 Argentina ARG 4.08
9 Armenia ARM 1.23
10 Aruba ABW 26.5
# ... with 207 more rows
annual_co2_emissions_per_capita?emissions_2004 THEN,slice_max to extract the 15 rows with annual_co2_emissions_per_capita,max_15_emittersannual_co2_emissions_per_capita?emissions_2004 THEN,slice_min to extract the 15 rows with the lowest valuesmin_15_emitters.bind_rows to bind together the max_15_emitter and min_15_emitters assign the outpout to max_min_15.max_min_15 <- bind_rows(max_15_emitters, min_15_emitters)
max_min_15 to 3 files formats.max_min_15 %>% write_csv("max_min_15.csv") # comma separated values
max_min_15 %>% write_tsv("max_min_15.tsv") # tab separated
max_min_15 %>% write_delim("max_min_15.psv", delim = "|") # pipe separated
max_min_15_csv <- read_csv("max_min_15.csv") # comma separated value
max_min_15_tsv <- read_tsv("max_min_15.tsv") # tab separated
max_min_15_psv <- read_delim("max_min_15.psv" , delim = "|") # pipe separated
setdiff to check for any differences amongmax_min_15_csv, max_min_15_tsv and max_min_15_psv.setdiff(max_min_15_csv, max_min_15_psv)
# A tibble: 0 x 3
# ... with 3 variables: country <chr>, code <chr>,
# annual_co2_emissions_per_capita <dbl>
country in max_min_15 for plotting and assign to max_min_15_plot_dataemissions_2004 THEN,mutate to reorder country according to annual_co2_emissions_per_capitamax_min_15_plot_data <- max_min_15 %>%
mutate(country = reorder(country, annual_co2_emissions_per_capita))
max_min_15_plot_dataggplot(data = max_min_15_plot_data,
mapping = aes(x= annual_co2_emissions_per_capita, y = country)) +
geom_col() +
labs(title = "The top 15 and bottom 15 per capita CO2 emissions",
subtitle = "for 2004",
x = NULL,
y = NULL)

preview: preview.png